
Star Formation

Q & A Session 30.06.2020
Protostellar Disks & Outflows

Magnetic Torque in a thin disk
Derive an estimate of the torque acting on a geometrically thin accretion disc due  to a dipolar 
magnetic field that originates in a rotating central star. Assume that the disc has an inner edge 
located away from the star at radius Rmin.
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The estimate of the total torque exerted on the inner part of the accretion disc by the magnetic field 
is

 =
4 π

3

Bz
2 (R*)

μ0

R*
6

Rmin
3

(1)

where Bz(R*) is the component of the magnetic flux density in the direction perpendicular to the 
disc at the surface of the star, R* is the radius of the star, and μ0 is the permeability of free space.

By equating this magnetic torque to the internal viscous torque acting at the inner radius Rmin, 
derive an expression for the inner radius of an accretion disc that is truncated by the stellar mag-
netic field.

The inner radius Rmin and the radius of the central star R* are related by
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where m  is the mass flow rate through the disc, and M is the mass of the central star. G is the con-
stant of gravitation.

Consider a 1 M⊙ T Tauri star of radius R* = 1R⊙, with a magnetic field strength at its surface of   
Bz(R*) = 10-1 Tesla. If the star is accreting at a rate M


= 10-8 M⊙ yr-1, calculate the radius of the inner 

edge of the accretion disc.
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For the T Tauri star, putting M = 1M⊙, R* = 1R⊙, Bz(R*) = 10-1 Tesla, m = 10-8 M⊙ yr-1, we get an 
inner radius of the accretion disc

Rmin

R*
= 50 10-1

4/7
15/7 1-2/7 1-1/7 = 13.413478976398627`

= 13.4R⊙

One class of young stars, known as FU Orionis stars, are known to undergo outbursts in which the 
apparent accretion rate increases substantially above the canonical value of M


= 10-8 M⊙ yr-1. If the 

accretion rate during outburst increases by a factor of 104 above this value, then calculate the 
radius of the inner edge of the accretion disc using the above stellar parameters. What do you think 
happens to the magnetic field in this case ?
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This figure is actually smaller than the radius(R* = 1R⊙) used for the star itself.

In this case the magnetic field lines are swept in towards the star by the increased mass flow and 
are essentially crushed against the stellar surface. The configuration is now very different since a 
boundary layer is generated.

A Simple T Tauri Disk Model
In this problem we will construct a simple model of a T Tauri star disk in terms of a few parameters: 
the midplane density and temperature ρm and Tm, the surface temperature Ts, the angular velocity 
Ω, and the specific opacity of the disk material κ. We assume that the disk is very geometrically thin 
and optically thick, and that it is in thermal and mechanical equilibrium.

a)

Assume that the disk radiates as a blackbody at temperature Ts. Show that the surface and mid-
plane temperatures are related approximately by

Tm ≈
3

8
κ Σ

1/4

Ts

where Σ is the disk surface density

The disk interior is optically thick, so the vertical radiation flux F is given by the diffusion 
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approximation:

F =
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where E is the radiation energy density and T is the gas temperature. In thermal equilibrium the flux 
does not vary with z, so we can re-arrange this equation and integrate from the midplane at z = 0 to 
the surface at z = zs:
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where the factor of 2 in the denominator on the LHS in the second step comes from the fact that Σ 
is the column density of the entire disk, and we integrated over only half of it. In the third step we 
assumed that Tm4 >> Ts4 , which will be true for any optically thick disk. Note that this is the flux 
carried away from the disk midplane in both the +z and -z directions – formally the flux changes 
direction discontinuously at z = 0 in this simple model, so the total flux leaving the midplane is 
twice this value. 

If the disk radiates as a blackbody, the radiation flux per unit area leaving each side of the disk 
surface is σ Ts4 , and this must balance the flux that is transported upward through the disk by 
diffusion. Thus we have
8 σ

3 κ Σ
Tm
4 ≈ σ Ts

4

where the expressions on either side of the equality represent the fluxes in either the +z or  -z 
directions either; the total fluxes are a factor of 2 greater, but the factors of 2 obviously cancel. 
Solving for Tm gives the desired result:

Tm ≈
3

8
κ Σ

1/4

Ts

b)

Suppose the disk is characterized by a standard α model, meaning that the viscosity ν = α cs H, 
where H is the scale height and cs is the sound speed. For such a disk the rate per unit area of the 
disk surface (counting each side separately) at which energy is released by viscous dissipation is 
Fd = (9 /8)νΣΩ2. Derive an estimate for the midplane temperature Tm in terms of Σ, Ω, and α.

Equating the dissipation rate Fd per unit area with the radiation rate per unit area σ T4
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In turn, plugging this into the relation we just derived between the surface and midplane tempera-
tures gives
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Substituting cs2 = kB Tm /μ, where μ is the mean particle mass and solving for Tm gives 

Tm ≈
27

64

α κ kB Σ2 Ω

σ μ

1/4

Note that it makes much more sense to compute cs from the midplane temperature than from the 
surface temperature, since the vast majority of the viscous dissipation is occurring near the mid-
plane, not at the disk surface.

c)

Calculate the cooling time of the disk in terms of the orbital period. Should the behavior of the disk 
be closer to isothermal or adiabatic?

The cooling time is the thermal energy divided by the energy radiation rate. The thermal energy per 
unit area is

Eth ≈
Σ cs

2

γ - 1
=

kB Σ Tm

(γ - 1) μ

where γ is the ratio of specific heats for the gas, which for molecular hydrogen will be somewhere 
between 5/3 and 7/5 depending on the gas temperature. The radiation rate is 2σ Ts4, so the cooling 
time is

tcool =
Eth

2 σ Ts
4
≈
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2 (γ - 1) μ σ Ts
4
≈

3 κ kB Σ2

16 (γ - 1) μ σ Tm
3
≈

4

9 (γ - 1) α Ω

The orbital period is torb = 2π /Ω, so the ratio of cooling time to orbital period is
tcool

torb
≈

2

9 π (γ - 1) α

For the typical values of α expected due to MRI or similar mechanisms, ∼0.01 or less, this number is 
significantly bigger than unity, so the cooling time is longer than the orbital period. Under these 
conditions the disk is likely to act adiabatically rather than isothermally. Only if a gets quite large, 
~0.1 or more, do we approach the isothermal regime

d)

Consider a disk with a mass of 0.03M⊙ orbiting a 1 M⊙ star, which has κ = 3 cm2 g-1 and α = 0.01. 
The disk runs from 1 to 20 AU, and the surface density varies as R-1. Use your model to express 
ρm, Tm,  and Ts as functions of the radius, normalized to 1 AU; i.e., derive results of the form 
ρm = r0(r /AU)p for each of the quantities listed. Is your numerical model disk gravitationally unsta-
ble (i.e., Q < 1) anywhere?

Let the disk surface density be Σ = Σ0(r /r0)-1, and let r0 = 1 AU and r1 = 20 AU be the inner and 
outer radii. The mass in the disk is

Mdisk = 
r0

r1
Σ0

r

r0

-1

2 π r ⅆr = 2 π Σ0 r0 (r1 - r0)

so
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Σ =
Mdisk
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r
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= 2.2 × 103
r

1 AU
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g cm-2

For a 1M⊙ star, the angular velocity of the orbit is

Ω =
G M

r3
= 2.0 × 10-7

r

1 AU

-3/2

s-1

Plugging in κ = 3 cm-2 g-11 and α = 0.01, taking μ = 3.9×10-24 as the mean particle mass, and 
plugging into the expression for Tm derived in part (b) gives

Tm ≈ 1980
r

1 AU

-7/6

K

In[76]:= LogPlot1980 r-7/6, 370 r-11/12, {r, 1, 20}
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and plugging this into the relation between Tm and Ts derived in part (a) gives

Ts ≈ 370
r

1 AU

-11/12

K

The midplane density is ρm ≈ Σ /H, where H is the scale height is H = cs /Ω = Ω-1 kB T /μ . If we use 

T ≈ Tm to compute the scale height, then we have

ρm ≈
Σ Ω

kB Tm / μ
= 1.7 × 10-9

r

1 AU
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g cm-3

In[78]:= LogPlot
1.7 × 10-9

1.7 × 10-24
r-23/12, {r, 1, 20}
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Finally, the Toomre Q of the disk computed using the midplane temperature (which is the most 
reasonable one to use, since it is the temperature of most of the mass) is
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Q =
Ω cs

π G Σ
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This reaches a minimum value of 4.4 at r = 20 AU. Thus the disk is gravitationally stable.
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